

WORKSHOP

METODOLOGIAS PARA DETERMINAÇÃO

DA ÁREA DE INUNDAÇÃO

BRASÍLIA, 16-18 JULHO DE 2013

> ÍNDICE

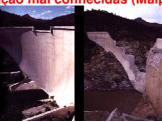
- · Causas e alguns casos históricos de ruptura de barragens
- · Consequências da ruptura de barragens
- · Simulação da cheia de ruptura
 - Metodologias
 - Desafios da simulação da cheia de ruptura
- Principais incertezas e limitações associadas aos modelos de simulação
- Principais resultados Mapa de inundação
 - · Perigosidade de cheia de ruptura
 - · Vulnerabilidade do vale a jusante

> Devido a eventos naturais

- Eventos excecionais, i.e., todas as causas pelas quais o homem não pode assumir a responsabilidade (sismos intensos, grandes cheias e deslizamentos)
- Deteriorações associadas a eventos naturais, como o envelhecimento e a alteração desfavorável da resistência do corpo da barragem

> Devido a eventos provocados

- Resultam de ações humanas: vandalismos, sabotagens e atos de guerra
- Incluem os erros humanos na exploração da barragem ou no decurso do seu projeto ou construção



LNEC | 3

As principais causas de ruptura

> Condições de fundação mal conhecidas (Malpasset, França, 1959)

- Barragem abóbada, no rio Reyran, 7 Km a norte da cidade de Fréjus
- A ruptura criou uma onda com cerca de 40 m, deslocando-se a uma velocidade de cerca de 70 km/hora
- Destruiu duas pequenas aldeias e originou a perda de 433 vidas
- Estudos geológicos e geotécnicos mostraram a existência de uma extensa falha tectónica na fundação do encontro esquerdo

> Erros de projeto (Barragem de S. Francis, USA, 1928)

- Barragem arco-gravidade para abastecimento de água a Los Angeles
- Durante a construção, o coroamento foi elevado de 3 m
- Durante o primeiro enchimento, apareceram fendas muito significativas no corpo da barragem
- A ruptura da barragem rompeu originou a perda de 600 vidas humanas

LNEC | 5

As principais causas de ruptura

> Erros de construção (Barragem dos Hospitais, Portugal, 1996)

- Barragem de terra com 12 m de altura e 268 000 m³ de capacidade, para rega, Évora, Portugal
- Material impróprio usado na construção colocado no aterro
- A barragem rompeu, durante o primeiro enchimento, n\u00e3o gerado v\u00edtimas mortais

 Eventos excecionais e erros de operação (Barragem de Euclides da Cunha, Brasil, 1977)

- A ocorrência de uma tromba d'água no Rio Pardo e falhas operacionais geraram o rompimento da estrutura por galgamento
- Originou a ruptura da barragem Sales de Oliveira, a jusante
- Este evento configura-se até hoje como o maior acidente envolvendo usinas hidrelétricas no Brasil

LNEC | 7

As principais causas de ruptura

> Eventos excepcionais (Shimantam e Banquiao, 1975, China)

- O aproveitamento da bacia do Rio Huai incluía duas grandes barragens, Banqiao e Shimantan, e mais 60 pequenas barragens
- Em 1975, uma situação meteorológica inabitual criou um ciclone que veio a originar uma sequência de 3 períodos de precipitação intensas
- As barragens romperam. Perderam a vida cerca de 26 000 pessoas
- Foi a mais grave catástrofe associada a ruptura de barragens registada. A barragem de Banqiao foi posteriormente reconstruída.

- > Estatísticas de rupturas históricas, realizadas a nível mundial, mostram que as principais causas de rompimento de barragens se devem:
 - 28% devido a percolação do maciço
 - 30% devido a problemas de fundação
 - 34% devido a causas hidráulicas e operacionais
- > A insuficiente capacidade de vazão, a sub-avaliação da cheia de projeto dos vertedouros e o mau funcionamento ou não funcionamento das comportas, nomeadamente devido deterioração dos órgãos de manobra constituem uma causa comum de ruptura

LNEC | 9

As consequências da ruptura

- No contexto da segurança nos vales a jusante das barragens, o evento que interessa é a ocorrência de uma cheia induzida e as consequências que daí podem advir, incluindo a perda de vidas humanas, perdas económicas ou outras consequências adversas (ambientais, sociais, etc.) no vale a jusante.
 - Uma cheia induzida é uma cheia não natural, i.e., provocada pelas deteriorações que afectam uma barragem, sejam elas uma ruptura ou qualquer outro acidente que implique descargas não controladas com impacto no vale a jusante, nomeadamente a operação inadequada dos órgãos de segurança.
 - As características da cheia induzida são usualmente diferentes das cheias naturais e determinadas recorrendo a modelos numéricos de simulação

Como se efetua a simulação da cheia induzida?

- > A simulação da cheia induzida é realizada em 3 fases:
 - · Formação da brecha
 - Cálculo da vazão efuente através da brecha

Simulação da ruptura da barragem

Simulação da propagação da vazão efluente através da brecha pelo rio a jusante

LNEC | 11

Problemas que surgem com a simulação da cheia induzida

- > Desafios na modelação da brecha de ruptura
 - Qual a dimensão e modo de ruptura (parcial, total)?
 - Qual o tempo de ruptura e tipo de ruptura (instantânea, rápida, gradual, lenta)?
- > Desafios na modelação do hidrograma efluente da brecha de ruptura
 - Qual o nível de água no reservatório no instante inicial?
 - Qual a afluência a considerar ao reservatório (ruptura por pipping, por exemplo)?
- > Desafios na propagação do hidrograma de vazão efluente pelo rio a jusante
 - Até onde se deverá estender o cálculo da propagação da cheia induzida, ou seja, qual o critério de fixação da fronteira de jusante que se deverá adotar?
 - Que escala de trabalho utilizar?
 - Como analisar as situações onde existem barragens em cascata?
 - Que coeficientes de rugosidade se devem utilizar?

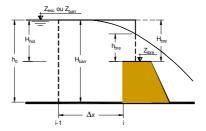
- > Modelos simplificados baseados em equações empíricas de previsão
- > Modelos paramétricos
- > Modelos baseados em métodos físicos (processos hidráulicos e geoténicos)
- > Os modelos simplificados são baseados em equações empíricas de previsão
 - Utilizam expressões que relacionam a vazão máxima efluente da brecha com as características da barragem ou do reservatório (geralmente altura, volume armazenado ou uma variável que compreenda estas duas características)
 - Estas expressões são desenvolvidas tendo por base casos de estudo, essencialmente derivados de rupturas históricas
 - Apenas determinam a vazão máxima efluente, ou seja, não simulam a brecha nem definem um hidrograma efluente da mesma

LNEC | 13

Como se efetua a simulação da brecha ruptura?

Modelos simplificados. Equações para estimativa da vazão máxima na seção da barragem em ruptura

Método	Expressão	Observações
KIRKPATRICK (1977)	$Q_{\text{max}} = 7,683 H_{bar}^{1,909}$	baseada em 16 casos de estudo e 5 cenários de ruptura de barragens hipotéticos
HAGEN (1982)	$Q_{\text{max}} = 1,205 (H_{bar} V_{alb})^{0,48}$	baseada em seis casos históricos de ruptura de barragens, constituindo uma equação envolvente superior dos casos analisados
USBR (1983)	$Q_{\text{max}} = 19H_{bar}^{1,85}$	baseada em 21 casos de ruptura, apresentando uma relação, que é uma envolvente superior dos casos estudados
USBR (1989)	$Q_{\text{max}} = 6.14 h_{barr}^{1.81} V_{alb}^{0.061}$	
FROEHLICH (1995)	$Q_{\text{max}} = 0.607 H_{bar}^{1,24} V_{alb}^{0,295}$	baseada em 22 casos de ruptura
INSTITUTION OF CIVIL ENGINEERS (1996)	$Q_{max} = 1.3H_{barr}^{2.5}$	
LEMPERIÈRE (1996)	$Q_{\text{max}} = H_{bar}^{0,5} (H_{bar}^2 + kV_{alb}^{0,5})$	k um coeficiente que varia entre 0.1, para argilas bem compactadas, e 1 para materiais incoerentes de pequena dimensão.



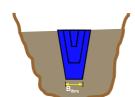
> Modelos paramétricos

- Nos modelos paramétricos o modelador define a geometria da brecha (a largura e a forma final) e o tempo de ruptura, fazendo uso do tratamento estatístico da informação que é obtida das rupturas históricas (protótipos) ou de resultados experimentais
- Adotam usualmente a hipótese simplificativa de assumir rupturas lineares (i.e. um aumento linear das dimensões da brecha no tempo entre dois estados especificados da brecha)

$$Z_{ibre}(i) = Z_{barr} - H_{bre} \frac{t_{rot}(i)}{t_{rot}}$$

$$B_{ibre}(i) = B_{ibre} \frac{t_{rot}(i)}{t_{rot}}$$

$$Q_{bre} = C_1 (Z_{esc}(i) - Z_{ibre}(i))^{1.5} + C_2 (Z_{esc}(i) - Z_{ibre}(i))^{2.5}$$


LNEC | 15

Como se efetua a simulação da brecha de ruptura?

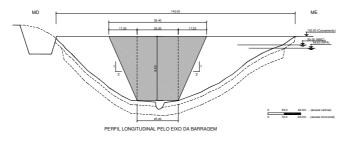
> Modelos baseados em métodos físicos

- Simulam a evolução da brecha e calculam o hidrograma resultante da ruptura de barragens de aterro usando modelos de erosão baseados na realidade física do problema, ou seja, em princípios de hidráulica, transporte sólido e mecânica dos solos
- Estes modelos são, usualmente, desenvolvidos acoplando as equações do regime variável a equações de erosão e de transporte sólido

Modelo baseado na fórmula de Meyer-Peter e Muller

$$q_s = \frac{8\sqrt{g}}{\rho_w^{0.5} \rho'} (\tau - \tau_c)^{1.5}$$

$$\Delta H_{bre} = 3600 \, \Delta t \, \frac{Q_s}{P_{bre} L (1-p)}$$



- > Verifica-se que antes de se efetuar a simulação da cheia induzida pode ser necessário atender às seguintes questões:
 - Quais as características da brecha? (dimensões, tempo de ruptura)
 - Qual o nível no reservatório no início da ruptura? (nível máximo normal? nível máximo de cheia?)
 - Qual a cheia afluente no início da ruptura?

LNEC | 17

Como se efetua a simulação da brecha de ruptura?

> As características da brecha depedem do tipo de barragem

- Barragens de aterro (terra ou enrocamento) rupturas graduais e parciais
- Barragens de concreto arco rupturas rápidas e totais
- Barragens de concreto gravidade rupturas rápidas e parciais

- > As características da brecha dependem, igualmente, do mecanismo de ruptura
- > Definem-se cenários:
 - Ruptura por mecanismos estrutural ou por percolação (devido por exemplo à ocorrência de pipping na barragem) que origina o denominado cenário de ruptura em dia de sol (sem influência da precipitação)
 - Ruptura por mecanismo hidráulico que origina o denominado cenário de ruptura por galgamento

> Problema:

• Os resultados dependem das hipóteses de simulação (cenários e parâmetros)

LNEC | 19

Como se efetua a simulação da brecha de ruptura?

> Critérios para simulação da cheia induzida. Cenário de ruptura mais provável

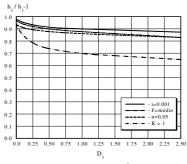
Todos os tipos de barragens			Características da brecha		
Nível inicial	Cheia afluente	Tipo de barragem	Dimensão	Tempo de ruptura	
Nível Máximo Normal (ruptura em dia de sol - ruptura da fundação)	Vazão média anual ou T=100 anos (ruptura em dia de sol)	Arco	ruptura total	10 min	
Coroamento (ruptura por galgamento)	Cheia de projeto T=1 000 anos (ruptura por galgamento)	Gravidade	Brecha rectangular correspondente a 50% da estrutura total ou 3 dos blocos maiores	30 min	
Coroamento (ruptura por galgamento)	Cheia de projeto T=1 000 anos (ruptura por galgamento)	Aterro	$2 < \frac{B_{thre}}{H_{barr}} < 3$ $H_{bre} = H_{barr}$	Máximo de {FROEHLICH, 1987 ou 90 min}	

Como se efetua a simulação da cheia induzida?

- > Modelos simplificados:
 - Equações empíricas que traduzem o amortecimento do escoamento ao longo do trecho de simulação
- > Modelos hidrológicos:
 - modelo HEC-Ras, modelo hidrológico desenvolvido pelo US Army Corps of Engineers (http://www.hec.usace.army.mil/)
- > Modelos hidrodinâmicos baseados nas equações do escoamento (Saint-Venant, por exemplo):
 - 1D, por exemplo o modelo DAMBRK, comercializado pela BOSS International
 - 2D, por exemplo ,os modelos:
 - TELEMAC (EDF)
 - MIKE-21 (Delft Hydraulics)
 - BIPLAN (LNEC/IST)

Como se efetua a simulação da cheia induzida?

Modelos simplificados. Equações para estimativa do amortecimento ao longo do vale a jusante


> USBR, 1989

$$Q_{\text{max}}(x) = \frac{Q_{\text{max}}(0)}{10^{0.0124x}}$$

> Wallingford, 2000

$$Q_{max}(x_j) = Q_{max}(x_{j-1}) exp(\frac{-\Delta x}{L_a(x_j)})$$

> Regulamentação espanhola, 1997

$$D_{j} = \Delta x \frac{i}{h_{i+1}}$$

Como se efetua a simulação da cheia induzida?

Modelos hidrodinâmicos – 1D DAMBRK ou 2D BIPLAN

Equações de Saint-Venant

$$O_t + P_x + R_y = S$$

Variáveis de estado

$$O = \begin{bmatrix} h \\ uh \\ vh \end{bmatrix} P = \begin{bmatrix} uh \\ u^2h + \frac{1}{2}(gh^2) \\ uvh \end{bmatrix} R = \begin{bmatrix} vh \\ uvh \\ v^2h + \frac{1}{2}(gh^2) \end{bmatrix} S = \begin{bmatrix} 0 \\ gh(i_x - J_x) \\ gh(i_y - J_y) \end{bmatrix}$$

MacCormack TVD

$$\widetilde{O}_{i,j}^{n+l} = O_{i,j}^{n} - \frac{\Delta t}{\Delta x} (P_{i,j}^{n} - P_{i-l,j}^{n}) - \frac{\Delta t}{\Delta y} (R_{i,j}^{n} - R_{i,j-l}^{n}) - \Delta t S_{i,j}^{n}$$

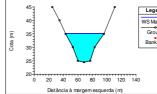
Como se efetua a simulação da cheia induzida?

- > Necessidade de caraterizar topograficamente o rio a jusante
- > Conversão da vazão em alturas de água nas seções a jusante:

$$h_{n+1} = \left(\frac{Q}{K_s \sqrt{i}}\right)^{0.6} \frac{\left(B + 2h_n \sqrt{1 + m^2}\right)^{0.4}}{B + mh_n}$$

Q – vazão

i – declive do rio

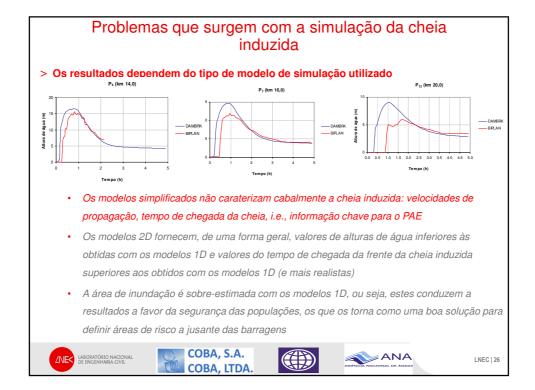

m – inclinação do talude da margem

B - largura do leito

h – altura de água

informação sobre topografia e relevo do rio

Legend

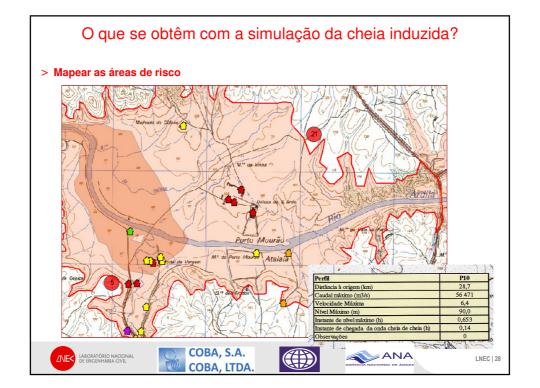


Problemas que surgem com a simulação da cheia induzida > Necessidade de caraterizar topograficamente o rio a jusante > No caso de modelos simplificados e1D: levantamento de perfis transversais > No caso de modelos 2D: elementos digitais compilados com recurso a ferramentas SIG, permitindo gerar diversos MDTs e malhas de cálculo com cotas do terreno para entrada nos modelos de simulação

COBA, LTDA

O que se obtêm com a simulação da cheia induzida?

> A simulação da cheia induzida permite:


- Mapear as áreas submersas pela cheia induzida identificar pessoas e bens em "exposição"
- Estimar o grau de perigosidade da cheia induzida (velocidades, alturas da onda) conhecer o perigo
- Conhecer a vulnerabilidade do vale a jusante (por ex. o número de pessoas que residem na área de risco, i.e., o número total de pessoas potencialmente em risco) – conhecer a vulnerabilidade
- Definir a classificação do dano potencial associado e contribuir para definir o risco associado à barragem
- Definir estratégias de mitigação do risco desenvolver planos de ação emergenciais

O que se obtêm com a simulação da cheia induzida?

> Estimar a perigosidade da cheia induzida

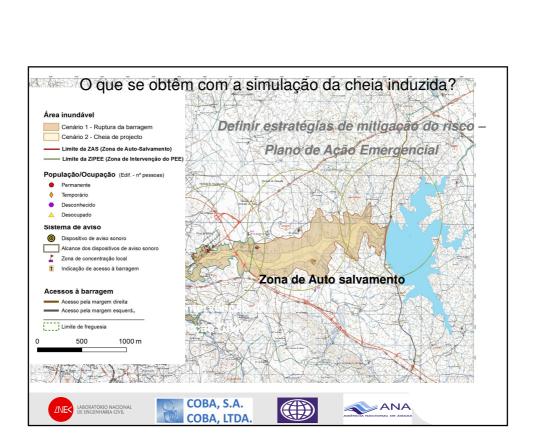
Caudal máximo	Velocidade máxima	Nível máximo			Duração da fase crítica da Inundação T _{Crit} (h:m) = Tempo	Altura máxima da	O,
Q _{gáx} (m³/s)	v _{máx} (m/s)	N _{máx} (m)	de Inundação T _{Cheg} (h:m)	Inundação T _{Nmáx} (h:m)	para que se restabeleçam os níveis iniciais	onda h _{max} (m)	ούοιΔ
1 476,00	3,46	126,82	00h03	00h18	00h31 (00h03 - 00h34)	6,43	
1 233,55	1,99	118,61	-	-	-	4,39	.면
1 008,72	3,40	113,90	00h06	00h21	00h34 (00h06 - 00h40)	5,34	Ribeira da Lampreia
821,94	4,02	110,27	-	-	-	6,64	aπ
773,08	3,88	103,66	00h08	00h24	00h42 (00h08 - 00h50)	5,40	큠
736,66	3,29	99,46	-	-	-	7,74	ra
685,94	2,69	91,37	00h10	00h27	00h48 (00h10 - 00h58)	5,31	<u>8</u>
620,89	4,08	87,10	-	-	-	6,37	Œ
611,64	4,10	82,37	00h12	00h30	00h54 (00h12 - 01h06)	6,01	
592,13	3,16	77,16	00h13	00h33	00h56 (00h13 - 01h09)	5,00	Confl.
542,74	2,18	73,59	00h14	00h36	00h58 (00h14 - 01h12)	4,56	
529,76	2,66	71,85	-	-	-	4,82	
484,00	2,36	67,50	00h16	00h42	01h10 (00h16 - 01h26)	4,47	
448,04	1,93	62,72	-	-	-	3,62	
414,38	1,94	60,21	00h18	00h54	01h16 (00h18-01h34)	4,82	ras
391,11	2,55	56,58	-	-	-	4,90	ie.
375,94	2,50	51,84	00h24	01h06	01h38 (00h24-02h02)	4,75	Ribeira de Carreiras
365,85	3,18	47,14	-	-	-	5,37	용
358,14	2,53	39,59	00h34	01h12	01h40 (00h34-02h14)	4,04	ei e
350,44	2,65	32,78	-	-	· -	3,85	흝
341.81	3,33	27,53	00h44	01h24	01h42 (00h44-02h26)	4,98	₩ -
336,58	3,43	18,98	-	-	· -	4,86	
331,93	2,49	10,48	-	_	<u>-</u>	4,18	
326.30	2,82	3,24	01h00	01h36	01h40 (01h00-02h40)	3.24	

29

O que se obtêm com a simulação da cheia induzida?

- > Caraterizar o vale a jusante, obrigando, ainda, ao uso de diversas fontes:
 - Cartas militares a diversas escalas (1:25 000, em Portugal)
 - Imagens do Google Earth!
 - Trabalho de campo envolvendo participação dos serviços locais de defesa civil
 - Dados estatísticos apurados através dos recenseamentos gerais da população e da habitação

b) Localização em planta da ponte ao km 2+900 no *Google Earth 2007*



ANA

LNEC | 31

COBA, S.A.

COBA, LTDA

